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A Rapid Entry to Carbocycles from Carbohydrates via Intramolecular Nitrone

Cycloaddition

Tony K. M. Shing,* David A. Elsley, and John G. Gillhouley
Department of Chemistry, The Victoria University of Manchester, Manchester M13 9PL, U.K.

Cyclopentane (1) and cyclohexane (2) have been synthesised from o-ribose and b-mannose respectively involving a
stereoselective intramolecular nitrone cycloaddition as a key step.

In connection with a programme on the synthesis of poly-
hydroxylated cyclopentanoid and cyclohexanoid natural pro-
ducts from sugars, e.g. aristeromycin! and crotepoxide,? we
sought to devise a general synthesis of highly oxygenated
carbocyclic synthons suitable for further elaboration into a
variety of target molecules. Encouraged by a previous report

that hex-5-enoses cyclised to form pentano-isoxazolidines on
treatment with N-alkylhydroxylamines,> we now describe a
short and flexible method of preparing five- and six-mem-
bered carbocycles, cyclopentane (1) and cyclohexane (2), via
an intramolecular nitrone cycloaddition (IMNC).

The route to the functionalised cyclopentane (1) is shown in
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Reagents: i, Ac,0, pyridine; ii, OsOy, NalOy, aq. dioxan; iii, NaBH,,
aq. EtOH; iv, 1 M HCI, THF.

Figure 1

Scheme 1. The acetonide (3), readily available from p-ribose,
reacted with an excess of vinylmagnesium bromide in tetra-
hydrofuran (THF), presumably via a chelation controlled
transition model shown in Figure 1, to give triol (4)tinca. 9:1
diastereoselectivity, m.p. 74°C; [«]p —31° (c 1.8, CHCly).
The stereochemistry of the newly formed alcohol in (4) was
assigned by analogy> and was confirmed by degradation
studies. Glycol cleavage oxidation of the vicinal diol moiety
in (4) afforded the lactol (5), which on heating with N-methyl
hydroxylamine underwent an IMNC¢ reaction to give the
isoxazolidine (6) as a single diastereoisomer in 94% yield,
m.p. 79—80°C; [a]p —59° (¢ 0.6, CHCl;). The stereo-
chemistry of the ring junction in (6) was confirmed by nuclear
Overhauser enhancement (n.O.e.) experiments. It is note-
worthy that the cycloaddition could proceed with a lactol
function and with an unprotected hydroxy group. Acetylation
of (6) followed by catalytic hydrogenolysis of the N-O bond
then provided the differentially protected cyclopentane (1),
[a]p —84° (c 0.9, CHCly).

On the other hand, the synthesis of the functionalised
cyclohexane (2) is illustrated in Scheme 2. Thus chelation
controlled addition of vinylmagnesium bromide to the aceto-
nide (7)7 derived from p-mannose gave the diol (8) in ca. 5:1
diastereoselectivity and in 93% vyield, m.p. 54—55°C; [«]p
+42° (¢ 1.1, CHCI;). The stereochemistry of the new chiral
centre in (8) was confirmed by degradation studies.f The diol

t All new compounds gave satisfactory analytical and spectral data.

t The triol (4) was converted into compound (11) which possesses a
plane of symmetry, thereby confirming the stereochemistry of the
newly formed alcohol [equation (1)]. Transformation of (8) into the
known volemitol hepta-acetate8 (12) confirmed its stereochemistry
[equation (2)].
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Scheme 1. Reagents: i, CH,CHMgBr, THF, (72%); ii, NalO,, aq.
MeOH, (90%); iii, Me(H)NOH-HCI, NaHCO3, aq. EtOH, reflux,
(94%); iv, Ac,O, pyridine (85%); v, Pd(OH),, H,, EtOH/AcOH,
(75%). Ac = CH;3CO.
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Scheme 2. Reagents: i, CH,CHMgBr, THF, (93%); ii, PhCH,Br,
NaH, THF, (79%); iii, aq. AcOH, (64%); iv, NalO,, aq. MeOH; v,
Me(H)NOH-HCI, NaHCOs, aq. ethanol, reflux, [65% from (9)]; vi,
Pd(OH),, H,, EtOH/AcOH, (60%).
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(8) was protected as the corresponding benzyl ether which was
then selectively hydrolysed to form the vicinal diol (9), [«]p
—120° (¢ 1.0, CHCl;). Glycol cleavage oxidation of (9),
followed by immediate reaction with N-methyl hydroxyl-
amine, afforded the isoxazolidine (10) as the major adduct in
ca. 6:1 stereoselectivity, m.p. 103—104°C; [«¢]p +11° (c 1.1,
CHCl;). The stereochemistry of (10) was assigned tentatively
by 'H n.m.r. spectroscopic studies which indicated that the
compound existed in a boat conformation in solution.
Selective hydrogenolysis of the N-O bond in (10) then yielded
the functionalised cyclohexane (2) as an oil, [«]p ~7° (¢ 1.0,
CHCly).
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